Signal transduction pathways activated in human pulmonary endothelial cells by OxPAPC, a bioactive component of oxidized lipoproteins.

نویسندگان

  • Konstantin G Birukov
  • Norbert Leitinger
  • Valery N Bochkov
  • Joe G N Garcia
چکیده

The bioactive component of mildly oxidized low-density lipoproteins, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), activates tissue factor expression and monocyte adhesion to endothelial cells (EC) from systemic circulation, but blocks expression of inflammatory adhesion molecules (VCAM, E-selectin) and neutrophil adhesion associated with EC acute inflammatory response to bacterial lypopolysacharide (LPS). Due to constant exposure to oxygen free radicals, lipids in the injured lung are especially prone to oxidative modification and increased OxPAPC generation. In this study, we focused on OxPAPC-mediated intracellular signaling mechanisms that lead to physiological responses in pulmonary endothelial cells. Our results demonstrate that OxPAPC treatment activated in a time-dependent fashion protein kinase C (PKC), protein kinase A (PKA), Raf/MEK1,2/Erk-1,2 MAP kinase cascade, JNK MAP kinase and transient protein tyrosine phosphorylation in human pulmonary artery endothelial cells (HPAEC), whereas nonoxidized PAPC was without effect. Pharmacological inhibition of PKC and tyrosine kinases blocked activation of Erk-1,2 kinase cascade upstream of Raf. OxPAPC did not affect myosin light chain (MLC) phosphorylation, but increased phosphorylation of cofillin, a molecular regulator of actin polymerization. Finally, OxPAPC induced p60Src-dependent tyrosine phosphorylation of focal adhesion proteins paxillin and FAK. Our results suggest a critical involvement of PKC and tyrosine phosphorylation in OxPAPC-induced activation of Erk-1,2 MAP kinase cascade associated with regulation of specific gene expression, and demonstrate rapid phosphorylation of cytoskeletal proteins, which indicates OxPAPC-induced EC remodeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca(++)/NFAT.

Activation of endothelial cells by lipid oxidation products is a key event in the initiation and progression of the atherosclerotic lesion. Minimally modified low-density lipoprotein (MM-LDL) induces the expression of certain inflammatory molecules such as tissue factor (TF) in endothelial cells. This study examined intracellular signaling pathways leading to TF up-regulation by oxidized 1-palm...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca /NFAT

Activation of endothelial cells by lipid oxidation products is a key event in the initiation and progression of the atherosclerotic lesion. Minimally modified lowdensity lipoprotein (MM-LDL) induces the expression of certain inflammatory molecules such as tissue factor (TF) in endothelial cells. This study examined intracellular signaling pathways leading to TF up-regulation by oxidized 1-palmi...

متن کامل

Oxidized phospholipid-induced endothelial cell/monocyte interaction is mediated by a cAMP-dependent R-Ras/PI3-kinase pathway.

OBJECTIVE Previous studies have demonstrated the importance of endothelial apical expression of connecting segment-1 (CS-1) fibronectin in mediating the entry of monocytes into atherosclerotic lesions and other sites of chronic inflammation. We previously demonstrated that oxidized PAPC (OxPAPC) increases monocyte-specific binding to arterial endothelium by causing deposition of CS-1 fibronecti...

متن کامل

Oxidized phospholipids induce expression of human heme oxygenase-1 involving activation of cAMP-responsive element-binding protein.

Heme oxygenase-1 (HO-1) catalyzes the rate-limiting step in heme degradation, protects against oxidative stress, and shows potent anti-inflammatory effects. Oxidized phospholipids, which are generated during inflammation and apoptosis, modulate the inflammatory response by inducing the expression of several genes including HO-1. Here we investigated the signaling pathways and transcriptional ev...

متن کامل

Endothelial NOS-dependent activation of c-Jun NH(2)- terminal kinase by oxidized low-density lipoprotein.

Oxidized low-density lipoprotein (oxLDL) is known to activate a number of signal transduction pathways in endothelial cells. Among these are the c-Jun NH(2)-terminal kinase (JNK), also known as stress-activated protein kinase, and extracellular signal-regulated kinase (ERK). These mitogen-activated protein kinases (MAP kinase) determine cell survival in response to environmental stress. Interes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microvascular research

دوره 67 1  شماره 

صفحات  -

تاریخ انتشار 2004